
Programming forProgramming for
Optimal MPI Performance onOptimal MPI Performance on
LCLC’’ss Linux / Quadrics ClustersLinux / Quadrics Clusters

Adam MoodyAdam Moody
moody20@llnl.govmoody20@llnl.gov

Development Environment GroupDevelopment Environment Group

May 23, 2005May 23, 2005

UCRL-PRES-212679

This work was performed under the auspices of the U.S. Department of Energy by University
of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

OutlineOutline

OverviewOverview
System Network ArchitectureSystem Network Architecture
The Quadrics InterconnectThe Quadrics Interconnect

Programming for Optimal MPIProgramming for Optimal MPI
Tuning the Runtime EnvironmentTuning the Runtime Environment
WrapWrap--upup

System Network ArchitectureSystem Network Architecture

ThunderThunder
4 Itanium24 Itanium2’’s per nodes per node
PCIPCI--X: 64X: 64--bit @ 133 MHz ~ 1066 MB/secbit @ 133 MHz ~ 1066 MB/sec
QsNetQsNetIIII: 2.5 : 2.5 usecusec, 900 MB/sec, 900 MB/sec

MCRMCR
2 Xeon2 Xeon’’s per nodes per node
PCI: 64PCI: 64--bit @ 66 MHz ~ 533 MB/secbit @ 66 MHz ~ 533 MB/sec
QsNetQsNet: 4.7 : 4.7 usecusec, 320 MB/sec, 320 MB/sec

The Quadrics InterconnectThe Quadrics Interconnect

Elite (the switch)Elite (the switch)
FatFat--tree architecturetree architecture
Full duplex linksFull duplex links
SourceSource--based, wormhole based, wormhole
routingrouting
Hardware support for Hardware support for
packet broadcasts, packet broadcasts,
remote tests, and reliable remote tests, and reliable
transmissiontransmission

The Quadrics InterconnectThe Quadrics Interconnect

ElanElan (the NIC)(the NIC)
Remote DMA supportRemote DMA support

OSOS--bypass, zerobypass, zero--copycopy
Local MMU & TLBLocal MMU & TLB

Communication Communication
OffloadOffload

Programmable RISC Programmable RISC
threaded processorthreaded processor
64 MB local SDRAM64 MB local SDRAM

PCI

Thread &
Command
Processors

Input

MMU &
TLB

Output

DMA
Engine

Cache

SDRAM

The Quadrics InterconnectThe Quadrics Interconnect

Low latencyLow latency
High bandwidthHigh bandwidth
Full duplexFull duplex
Communication offloadCommunication offload
Hardware support for broadcast Hardware support for broadcast
Hardware support for reliable transmissionHardware support for reliable transmission

OutlineOutline

OverviewOverview
Programming for Optimal MPIProgramming for Optimal MPI

Design to minimize communicationDesign to minimize communication
Many small messages kill performanceMany small messages kill performance
Take advantage of offloading, zeroTake advantage of offloading, zero--copy, OScopy, OS--
bypassbypass

Tuning the Runtime EnvironmentTuning the Runtime Environment
WrapWrap--upup

Programming for Optimal MPIProgramming for Optimal MPI

Design to minimize communicationDesign to minimize communication
Map data to a process so as to minimize its number of Map data to a process so as to minimize its number of
communication partners first, message size secondcommunication partners first, message size second
Avoid global communication operations, divide Avoid global communication operations, divide
processes into subprocesses into sub--communicators where possiblecommunicators where possible
Consider hybrid MPI / Consider hybrid MPI / OpenMPOpenMP
Always use collectives, but know that gather, scatter, Always use collectives, but know that gather, scatter,
and and alltoallalltoall are inherently nonare inherently non--scalablescalable

Many small messages kill performanceMany small messages kill performance
Take full advantage of offloading, zeroTake full advantage of offloading, zero--copy, copy,
OSOS--bypassbypass

Data MappingData Mapping
For example, say our problem requires For example, say our problem requires
a matrix transpose. What is the best a matrix transpose. What is the best
way (way (wrtwrt MPI) to assign the matrix to MPI) to assign the matrix to
four processors?four processors?

Data MappingData Mapping

P1

P2

P3

P4

P1

P2

P3

P4

Requires Requires
MPI_AlltoallMPI_Alltoall()()

PP22 messagesmessages
Less scalableLess scalable

P1 P2

P3 P4

P1 P2

P3 P4

Requires Requires
MPI_Send/RecvMPI_Send/Recv()()

P messagesP messages
More scalableMore scalable

In general, itIn general, it’’s better to send a few big messages s better to send a few big messages
rather than a lot of little ones.rather than a lot of little ones.

Reduce number of messages first, message size secondReduce number of messages first, message size second

Global communication andGlobal communication and
SubSub--communicatorscommunicators

If possible, avoid design choices that require processes If possible, avoid design choices that require processes
to synchronize or exchange data with all other processes to synchronize or exchange data with all other processes
(e.g., collectives on MPI_COMM_WORLD)(e.g., collectives on MPI_COMM_WORLD)
Instead, favor algorithms that divide processes into Instead, favor algorithms that divide processes into
subsets via subsubsets via sub--communicatorscommunicators

It is ok to overlap communicators and assign a process to more It is ok to overlap communicators and assign a process to more
than onethan one

Create subCreate sub--communicators early on and reuse themcommunicators early on and reuse them
Several global collectives are called to create a communicator, Several global collectives are called to create a communicator,
so creating one to do just a few operations before so creating one to do just a few operations before deallocatingdeallocating it it
may be selfmay be self--defeatingdefeating

Hybrid MPI / Hybrid MPI / OpenMPOpenMP
Advantages (Advantages (wrtwrt MPIMPI--only)only)

Sharing data between processors on same nodeSharing data between processors on same node
MPI MPI –– data copied from one address space to anotherdata copied from one address space to another

Latency: Latency: microsecsmicrosecs; Bandwidth: memory; Bandwidth: memory--copy speedcopy speed
OpenMPOpenMP –– shared address space, threads synchronizeshared address space, threads synchronize

Latency: Latency: nanosecsnanosecs; Bandwidth: infinite (data doesn; Bandwidth: infinite (data doesn’’t move)t move)

Sharing data between processors on diff. nodesSharing data between processors on diff. nodes
MPIMPI--only: multiple MPI only: multiple MPI procsprocs / node, one network link/ node, one network link

MPI processes receive fraction of network bandwidthMPI processes receive fraction of network bandwidth
Hybrid: one MPI proc / node, one network linkHybrid: one MPI proc / node, one network link

MPI processes receive full network bandwidthMPI processes receive full network bandwidth
Fewer processes, bigger message sizes Fewer processes, bigger message sizes –– generally good for generally good for
scalabilityscalability

Hybrid MPI / Hybrid MPI / OpenMPOpenMP
DisadvantagesDisadvantages

OpenMPOpenMP may be difficult to implement may be difficult to implement
depending on your algorithmdepending on your algorithm
OpenMPOpenMP maintenancemaintenance

need threadneed thread--safe libraries, including 3safe libraries, including 3rdrd partyparty
must be built with threadmust be built with thread--safe compilerssafe compilers

OpenMPOpenMP performanceperformance
depends on support and quality of compilerdepends on support and quality of compiler
threadthread--processor affinityprocessor affinity
overhead may outweigh benefitsoverhead may outweigh benefits

MPI CollectivesMPI Collectives

MPI vendors tune collectives optimally for underlying MPI vendors tune collectives optimally for underlying
hardwarehardware

Leverage their work; use interconnect to its fullestLeverage their work; use interconnect to its fullest
Common collectives to be aware of:Common collectives to be aware of:

BarrierBarrier
BroadcastBroadcast
Reduce, Reduce, AllreduceAllreduce
Gather, Gather, AllgatherAllgather, , GathervGatherv, , AllgathervAllgatherv
Scatter, Scatter, ScattervScatterv
AlltoallAlltoall, , AlltoallvAlltoallv

If youIf you’’re unfamiliar with these, take a few minutes and re unfamiliar with these, take a few minutes and
read about them in the MPI standard read about them in the MPI standard –– you may find you may find
them usefulthem useful

Collective Scalability on QuadricsCollective Scalability on Quadrics

For P processes and message size M:For P processes and message size M:
Barrier, BroadcastBarrier, Broadcast O(P,M) ~ MO(P,M) ~ M
Reduce, Reduce, AllreduceAllreduce O(P,M) ~ O(P,M) ~ log(Plog(P)*M)*M
Gather, Gather, AllgatherAllgather, Scatter, Scatter O(P,M) ~ P*MO(P,M) ~ P*M
AlltoallAlltoall O(P,M) ~ P*M +O(P,M) ~ P*M +

contentioncontention
Quadrics hardware provides superb scalability of Quadrics hardware provides superb scalability of
Barrier, Broadcast, Reduce, Barrier, Broadcast, Reduce, AllreduceAllreduce
Gather, Gather, AllgatherAllgather, Scatter, and , Scatter, and AlltoallAlltoall are are
inherently noninherently non--scalablescalable

these will bite you in largethese will bite you in large--scale global operationsscale global operations

Times for 8-byte collectives

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16 32 64 128 256 512 980

Processes (one per node)

M
ic

ro
se

co
nd

s

Allreduce
Reduce
Broadcast
Barrier

On Thunder,
Barrier and Broadcast in nearly constant time
Reduce / Allreduce on 980 processes takes only 5-6 times longer than 2 procs.

Times for 8-byte collectives

1

10

100

1000

10000

100000

2 4 8 16 32 64 128 256 512 980

Processes (one per node)

M
ic

ro
se

co
nd

s

Alltoall
Allgather
Gather
Allreduce
Reduce
Broadcast
Barrier

100x

But,
Gathers and Alltoall are 100 times slower
(inherent limits in communication pattern, not interconnect or implementation)

Programming for Optimal MPIProgramming for Optimal MPI

Design to minimize communicationDesign to minimize communication
Many small messages kill performanceMany small messages kill performance

Pack them into large messagesPack them into large messages
Eliminate them via collectivesEliminate them via collectives

Take advantage of offloading, zeroTake advantage of offloading, zero--copy, copy,
OSOS--bypassbypass

Effective Bandwidth

0

100

200

300

400

500

600

700

800

900

1000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M
Bytes

M
B

/s
ec

Bidir Bidir

Unidir Unidir

Thunder MCR

E.g., say we have four chunks of 1024-byte data to send to the same destination
Need to push a total of 4K of data through network
Packing into one 4K message delivers twice the bandwidth of four 1K messages
Same amount of data @ 2x the bandwidth 1/2 the time

Message Transfer Time

0

5

10

15

20

25

30

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K
Bytes

M
ic

ro
se

co
nd

s

inter inter

intra intra

ThunderMCR

The effect of packing is more extreme for very small messages.
On Thunder, 4096 bytes can be sent between nodes in only 4x the time it takes
to send just 1.

Packing Small MessagesPacking Small Messages

Packing comes with a costPacking comes with a cost
Memory copies required to pack and unpack the dataMemory copies required to pack and unpack the data

Packing pays off so long as the memory copies Packing pays off so long as the memory copies
cost less than the savings from higher cost less than the savings from higher
bandwidthbandwidth

Switch point occurs just before the bandwidth curve Switch point occurs just before the bandwidth curve
levels outlevels out
If your message sizes are well below this point, If your message sizes are well below this point,
investigate packinginvestigate packing

P1

P2

P3

P4

P1

P2

P3

P4

Example: Packing Small MessagesExample: Packing Small Messages

User needed 2D transpose on 3D data setUser needed 2D transpose on 3D data set
Requires Requires MPI_AlltoallMPI_Alltoall()()

Original ImplementationOriginal Implementation
Transpose each plane in zTranspose each plane in z--dim, one at dim, one at atat timetime
Fixed problem size scaled well to tens of processors, Fixed problem size scaled well to tens of processors,
suffered severe bottle neck at hundredssuffered severe bottle neck at hundreds

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4
z

Example: Packing Small MessagesExample: Packing Small Messages

Why did the scaling fall Why did the scaling fall
off?off?

When scaling a fixedWhen scaling a fixed--size size
problem to P processes, problem to P processes,
the message size in the message size in
MPI_AlltoallMPI_Alltoall() scales as () scales as
1/P1/P22

Performance quickly falls Performance quickly falls
off as the message size off as the message size
begins sliding down the begins sliding down the
bandwidth curvebandwidth curve

Effective Bandwidth

0

100

200

300

400

500

600

700

800

900

1000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M
Bytes

M
B

/s
ec

Bidir Bidir

Unidir Unidir

Thunder MCR

Example: Packing Small MessagesExample: Packing Small Messages

Modified ImplementationModified Implementation
Pack all zPack all z--dim data in one message, perform dim data in one message, perform
single single MPI_AlltoallMPI_Alltoall(), unpack z(), unpack z--dim datadim data
Used MPI Derived Used MPI Derived DatatypesDatatypes so MPI did all so MPI did all
packing / unpacking for uspacking / unpacking for us
Since there were 100Since there were 100--200 planes in the z200 planes in the z--dim, dim,
this increased message size by 100this increased message size by 100--200 times200 times
Performance returned as we shot back up the Performance returned as we shot back up the
bandwidth curvebandwidth curve

Packed Transpose (aka 3D)
Ran slower at small scale,
where packing /
unpacking introduce
overhead but no savings
Ran 10-20x faster at large
scale
Achieved 2x speedup in
application

Per Processor Time for Matrix Transpose
vs. Number of Processors

Example 2: Packing Small Example 2: Packing Small
MessagesMessages

User needed to write distributed arrays in output stepUser needed to write distributed arrays in output step
Requires gather to root for formattingRequires gather to root for formatting

Original ImplementationOriginal Implementation
For each variable, for each process, root sends For each variable, for each process, root sends ““go aheadgo ahead””
message then receives data via message then receives data via MPI_Send/RecvMPI_Send/Recv()()
Fixed problem size scaled well to hundreds of processes, Fixed problem size scaled well to hundreds of processes,
suffered severe bottleneck at thousandssuffered severe bottleneck at thousands

A0
A1 A2 A3

A

B0

B1 B2 B3

P1 P2 P3P0

B

Example 2: Packing Small Example 2: Packing Small
MessagesMessages

Why did the scaling fall off?Why did the scaling fall off?
When scaling a fixedWhen scaling a fixed--size problem to P processes, the size problem to P processes, the
message size scales as 1/Pmessage size scales as 1/P
Performance quickly falls off as the message size begins Performance quickly falls off as the message size begins
sliding down the bandwidth curvesliding down the bandwidth curve

Modified ImplementationModified Implementation
Pack pieces of distributed data arrays into a single message, Pack pieces of distributed data arrays into a single message,
gather to root, then unpackgather to root, then unpack
Since there were ~70 such variables, this increased message Since there were ~70 such variables, this increased message
size dramaticallysize dramatically
Performance for gather increased by 10Performance for gather increased by 10--20x20x
Achieved 2x speedup in applicationAchieved 2x speedup in application

Eliminating Small MessagesEliminating Small Messages

Collectives eliminate small messages by packing Collectives eliminate small messages by packing
across process boundariesacross process boundaries

Data from processes on the same node can be Data from processes on the same node can be
combined into a nodecombined into a node--wide message in shared wide message in shared
memorymemory
TreeTree--based algorithms combine messages from based algorithms combine messages from
multiple children into a single message for parentmultiple children into a single message for parent
HardwareHardware--based broadcast simultaneously delivers a based broadcast simultaneously delivers a
single message to multiple processessingle message to multiple processes

Look for places to substitute collectives in place Look for places to substitute collectives in place
of of ““forfor”” loopsloops

Especially relevant to legacy codes originally designed Especially relevant to legacy codes originally designed
for a small number of processesfor a small number of processes

Example: Eliminating Small Example: Eliminating Small
MessagesMessages

if (myid == 0)

sum = my_data

for i = 1 to (P-1)

MPI_Recv(data from i)

sum = data + sum

else

MPI_Send(my_data to 0)

User needed to compute global sum of some distributed User needed to compute global sum of some distributed
datadata
Original ImplementationOriginal Implementation

For each process, root receives data via For each process, root receives data via MPI_Send/RecvMPI_Send/Recv() and () and
adds to running sumadds to running sum
Became severe bottleneck at thousands of processesBecame severe bottleneck at thousands of processes

Example: Eliminating Small Example: Eliminating Small
MessagesMessages

MPI_Reduce(my_data, sum, MPI_SUM, root=0)

Modified ImplementationModified Implementation
Replaced manual reduction with call to Replaced manual reduction with call to MPI_ReduceMPI_Reduce()()
Performance for reduction increased by 100Performance for reduction increased by 100--200x200x
Achieved 3x speedup in applicationAchieved 3x speedup in application

Speedup on Thunder:
Manual Reduction (estimate) vs

MPI_Reduce (measured)

0

10

20

30

40

50

60

70

80

90

2 4 8 16 32 64 128 256 512 980
Processes (one per node)

Sp
ee

du
p

Programming for Optimal MPIProgramming for Optimal MPI

Design to minimize communicationDesign to minimize communication
Many small messages kill performanceMany small messages kill performance
Take advantage of offloading, zeroTake advantage of offloading, zero--copy, copy,
OSOS--bypassbypass

Use Use Isend/IrecvIsend/Irecv(), use collectives (), use collectives –– NIC will NIC will
assume tasks, freeing the main processorassume tasks, freeing the main processor
PrePre--post receives to avoid unexpected post receives to avoid unexpected
message bufferingmessage buffering
Touch send and receive buffers to avoid page Touch send and receive buffers to avoid page
faultsfaults

Programming for Optimal MPIProgramming for Optimal MPI
SummarySummary

Design to minimize communicationDesign to minimize communication
Map data to processors so as to minimize communicationMap data to processors so as to minimize communication
Avoid global operations, use subAvoid global operations, use sub--communicatorscommunicators
Consider hybrid MPI / Consider hybrid MPI / OpenMPOpenMP
Always use collectives, but know that gather/scatter/Always use collectives, but know that gather/scatter/alltoallalltoall are are
inherently noninherently non--scalablescalable

Many small messages kill performanceMany small messages kill performance
Pack them into large messagesPack them into large messages
Eliminate them via collectivesEliminate them via collectives

Take full advantage of offloading, zeroTake full advantage of offloading, zero--copy, OScopy, OS--bypassbypass
Use Use Isend/IrecvIsend/Irecv(), use collectives (), use collectives –– NIC will assume tasks, NIC will assume tasks,
freeing the main processorfreeing the main processor
PrePre--post receives to avoid unexpected message bufferingpost receives to avoid unexpected message buffering
Touch send and receive buffers to avoid page faultsTouch send and receive buffers to avoid page faults

OutlineOutline

OverviewOverview
Programming for Optimal MPIProgramming for Optimal MPI
Tuning the Runtime EnvironmentTuning the Runtime Environment

Tweaking algorithm switch pointsTweaking algorithm switch points
Block vs. cyclic process distributionBlock vs. cyclic process distribution
Contiguous nodesContiguous nodes

WrapWrap--upup

Tweaking Algorithm Switch PointsTweaking Algorithm Switch Points
PointPoint--toto--point Message Protocolspoint Message Protocols

Message Size

LIBELAN_TPORT_SMALLMSGLIBELAN_TPORT_SMALLMSG LIBELAN_TPORT_BIGMSGLIBELAN_TPORT_BIGMSG

inline asynchronous synchronous

asynchronous synchronous

LIBELAN_SHM_BIGMSGLIBELAN_SHM_BIGMSG

InternodeInternode

IntranodeIntranode

128-288 32k-64k

LIBELAN_TPORT_SHM_ENABLE:LIBELAN_TPORT_SHM_ENABLE: Turn on/off shared-memory messages

Tweaking Algorithm Switch PointsTweaking Algorithm Switch Points

““BestBest”” values for switch points vary with values for switch points vary with
application and problem sizeapplication and problem size

If you send lots of messages sized near these default If you send lots of messages sized near these default
boundaries, experiment with tweaking the switch boundaries, experiment with tweaking the switch
pointspoints
If the majority of your messages are far away, the If the majority of your messages are far away, the
defaults are probably just finedefaults are probably just fine

One user obtained 2x speedup in key operation One user obtained 2x speedup in key operation
by forcing synchronous protocolby forcing synchronous protocol
Later versions of the MPI library will likely Later versions of the MPI library will likely
support additional switch point variablessupport additional switch point variables

Block vs. Cyclic DistributionBlock vs. Cyclic Distribution

SrunSrun supports two processessupports two processes--toto--node node
mappings through mappings through ‘‘--mm’’ optionoption

““--m blockm block”” (default)(default)
““--m cyclicm cyclic””

P0

P1

P2

P3

N0 N1

BlockBlock

P0

P2

P1

P3

N0 N1

CyclicCyclic

Block vs. Cyclic DistributionBlock vs. Cyclic Distribution

Depending on how the processes in your Depending on how the processes in your
application communicate, one mapping may be application communicate, one mapping may be
better than the otherbetter than the other

Best to group processes that frequently talk to one Best to group processes that frequently talk to one
another close to each other, i.e., on the same nodeanother close to each other, i.e., on the same node
If a process has multiple sets of communication If a process has multiple sets of communication
partners, group the set with the costliest partners, group the set with the costliest
communicationcommunication

Difficult to generalize, give both settings a tryDifficult to generalize, give both settings a try

Contiguous NodesContiguous Nodes

HardwareHardware--based broadcast used when sending to based broadcast used when sending to
processes residing on nodes physically contiguous processes residing on nodes physically contiguous wrtwrt
switchswitch

thunder[40thunder[40--60] can be done in one Broadcast60] can be done in one Broadcast
thunder[40,42thunder[40,42--61] requires two 61] requires two –– twice as slowtwice as slow
thunder[40,42,44thunder[40,42,44--62] requires three 62] requires three ……

Applications which spend much of their time in global Applications which spend much of their time in global
calls to Barrier, Broadcast, Reduce, or calls to Barrier, Broadcast, Reduce, or AllreduceAllreduce, may , may
notice a differencenotice a difference

For these apps, aim to run on largest set of contiguous nodes For these apps, aim to run on largest set of contiguous nodes
when you can (e.g., during a DAT)when you can (e.g., during a DAT)
Can exclude fragmented ranges via Can exclude fragmented ranges via ‘‘--xx’’ srunsrun optionoption

For apps not dominated by these conditions, fragmented For apps not dominated by these conditions, fragmented
ranges have little impact ranges have little impact –– dondon’’t worry about themt worry about them

OutlineOutline

OverviewOverview
Programming for Optimal MPIProgramming for Optimal MPI
Tuning the Runtime EnvironmentTuning the Runtime Environment
WrapWrap--upup

mpiPmpiP –– MPI Profiling LibraryMPI Profiling Library
AcknowledgementsAcknowledgements
Resources / QuestionsResources / Questions

mpiPmpiP –– MPI Profiling LibraryMPI Profiling Library

Answers questions like:Answers questions like:
How much time is my app spending in MPI?How much time is my app spending in MPI?
Which MPI call sites are the bottlenecks?Which MPI call sites are the bottlenecks?

Easy to useEasy to use
Just replace Just replace ““srunsrun”” with with ““srunsrun--mpipmpip””
No need to rebuild or even No need to rebuild or even relinkrelink (in most cases)(in most cases)

For more infoFor more info
www.llnl.gov/icc/ic/DEG/mpipwww.llnl.gov/icc/ic/DEG/mpip--llnl.htmlllnl.html (LLNL users)(LLNL users)
www.llnl.gov/CASC/mpipwww.llnl.gov/CASC/mpip (general users)(general users)
Developed and maintained by Chris Developed and maintained by Chris ChambreauChambreau

AcknowledgementsAcknowledgements

Users and CodesUsers and Codes
AntoninoAntonino FerranteFerrante

DNSTBL DNSTBL –– Direct Numerical Simulation of a Turbulent Boundary LayerDirect Numerical Simulation of a Turbulent Boundary Layer
John TaylorJohn Taylor

MM5 MM5 –– Climate ModelingClimate Modeling
Alison KubotaAlison Kubota
Eduardo Eduardo BringaBringa

MDCASK MDCASK –– Molecular DynamicsMolecular Dynamics
JeanJean--lucluc FattebertFattebert

MGmolMGmol –– MultiMulti--grid Molecular Dynamicsgrid Molecular Dynamics
Kathleen Kathleen McCandlessMcCandless, Mike , Mike ZikaZika, Mike Collette, Mike Collette

QuadricsQuadrics
Duncan Duncan RowethRoweth and David Addisonand David Addison

Resources / QuestionsResources / Questions

LCLC’’ss MPI web pageMPI web page
www.llnl.gov/computing/mpiwww.llnl.gov/computing/mpi
Links to MPI resources, manuals, general infoLinks to MPI resources, manuals, general info

Performance dataPerformance data
MPI environment variablesMPI environment variables
This presentationThis presentation

Linux MPI SupportLinux MPI Support
Adam MoodyAdam Moody moody20@llnl.govmoody20@llnl.gov
Sheila FaulknerSheila Faulkner faulkner5@llnl.govfaulkner5@llnl.gov

ProblemsProblems
LC HotlineLC Hotline

ExtraExtra
SlidesSlides

Effective Bandwidth

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M
Bytes

M
B

/s
ec

intra intra

inter inter

Thunder MCR

